Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency

نویسندگان

  • Sander Barnhoorn
  • Lieneke M. Uittenboogaard
  • Dick Jaarsma
  • Wilbert P. Vermeij
  • Maria Tresini
  • Michael Weymaere
  • Hervé Menoni
  • Renata M. C. Brandt
  • Monique C. de Waard
  • Sander M. Botter
  • Altaf H. Sarker
  • Nicolaas G. J. Jaspers
  • Gijsbertus T. J. van der Horst
  • Priscilla K. Cooper
  • Jan H. J. Hoeijmakers
  • Ingrid van der Pluijm
  • Laura J. Niedernhofer
چکیده

As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of quantitative DNA cleavage assay for XPG endonuclease activity using endogenous nuclear proteins in human cell lines.

XPG, a structure-specific DNA endonuclease responsible for the 3' incision of DNA lesions during nucleotide excision repair (NER), is associated with high risk of skin cancer as well as skeletal, neurological and developmental abnormalities when functionally defective. These observations have led to the model wherein the endonuclease activity of XPG is important for NER. Herein, we first demons...

متن کامل

The founding members of xeroderma pigmentosum group G produce XPG protein with severely impaired endonuclease activity.

Of the eight human genes implicated in xeroderma pigmentosum, defects in XPG produce some of the most clinically diverse symptoms. These range from mild freckling to severe skeletal and neurologic abnormalities characteristic of Cockayne syndrome. Mildly affected xeroderma pigmentosum group G patients have diminished XPG endonuclease activity in nucleotide excision repair, whereas severely affe...

متن کامل

Nucleotide excision repair endonuclease genes in Drosophila melanogaster.

Nucleotide excision repair (NER) is the primary pathway for the removal of ultraviolet light-induced damage and bulky adducts from DNA in eukaryotes. During NER, the helix is unwound around the damaged site, and incisions are made on the 5' and 3' sides, to release an oligonucleotide carrying the lesion. Repair synthesis can then proceed, using the intact strand as a template. The incisions fla...

متن کامل

Irofulven cytotoxicity depends on transcription-coupled nucleotide excision repair and is correlated with XPG expression in solid tumor cells.

BACKGROUND Irofulven is a novel alkylating agent with promising clinical activity, particularly toward ovarian and hormone-refractory prostate cancers. To facilitate additional clinical development, we have aimed to identify biological markers associated with sensitivity to the compound. METHODS Fibroblasts derived from patients with xeroderma pigmentosum or Cockayne's syndrome along with a p...

متن کامل

Splice variants of the endonucleases XPF and XPG contain residual DNA repair capabilities and could be a valuable tool for personalized medicine

The two endonucleases XPF and XPG are essentially involved in nucleotide excision repair (NER) and interstrand crosslink (ICL) repair. Defects in these two proteins result in severe diseases like xeroderma pigmentosum (XP). We applied our newly CRISPR/Cas9 generated human XPF knockout cell line with complete loss of XPF and primary fibroblasts from an XP-G patient (XP20BE) to analyze until now ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014